首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236471篇
  免费   32135篇
  国内免费   27111篇
电工技术   22374篇
技术理论   10篇
综合类   18462篇
化学工业   41016篇
金属工艺   10244篇
机械仪表   15989篇
建筑科学   9587篇
矿业工程   3676篇
能源动力   6482篇
轻工业   18739篇
水利工程   2903篇
石油天然气   5577篇
武器工业   3094篇
无线电   37718篇
一般工业技术   24445篇
冶金工业   5961篇
原子能技术   3614篇
自动化技术   65826篇
  2024年   582篇
  2023年   3815篇
  2022年   6258篇
  2021年   8405篇
  2020年   8212篇
  2019年   7275篇
  2018年   6738篇
  2017年   9168篇
  2016年   10080篇
  2015年   11739篇
  2014年   12280篇
  2013年   15626篇
  2012年   18037篇
  2011年   20353篇
  2010年   14726篇
  2009年   14640篇
  2008年   15970篇
  2007年   17841篇
  2006年   16805篇
  2005年   14487篇
  2004年   12236篇
  2003年   9862篇
  2002年   7518篇
  2001年   5698篇
  2000年   4646篇
  1999年   3778篇
  1998年   3171篇
  1997年   2605篇
  1996年   2271篇
  1995年   1935篇
  1994年   1726篇
  1993年   1362篇
  1992年   1095篇
  1991年   868篇
  1990年   758篇
  1989年   583篇
  1988年   437篇
  1987年   257篇
  1986年   236篇
  1985年   310篇
  1984年   276篇
  1983年   226篇
  1982年   253篇
  1981年   140篇
  1980年   128篇
  1979年   57篇
  1978年   38篇
  1977年   50篇
  1976年   26篇
  1959年   26篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
21.
分析了注射模生产的现状,针对其生产中智能化调控应用方面的不足,提出模内参数的自适应调节方案,还介绍了自适应工作的原理、可调参数种类、逻辑推理等,并实际验证了基于注塑设备联网集成工艺数据下注射模成型工艺自适应调节的可行性。  相似文献   
22.
《Ceramics International》2022,48(4):4710-4721
In this study, AA5083 sheets were reinforced with four different hybrid nanoparticles by friction stir processing (FSP) for the development of surface nanocomposites used in advanced engineering applications. The present research focused on improving the properties and tribological behaviour of AA5083 alloy surfaces, including novel hybrid nanoparticles and the intermetallic phase formed during FSP. A tribometer tester with a constant normal load was used to examine the tribological performance of the hybrid composites. After the wear test, a surface profiler inspector was used to analyse the morphology and surface roughness of the examined materials. The Vickers micro-hardness of the base metal and the manufactured composites were measured. During FSP, a new intermetallic phase of AlV3 was successfully formed at 300–400 °C in the hybrid nanocomposites containing VC particles. The reinforcements resulted in additional grain refining than FSP. The AA5083/Ta2C–Al2O3 exhibited the greatest grain refinement, a sixty-fold reduction in grain size compared to that of the base alloy. The results revealed that the hybrid nanocomposites containing VC particles demonstrated the most significant microhardness values inside the stirred zone as a result of the presence of the AlV3 phase, which was increased by 25–30%. Moreover, the mechanical properties were significantly improved for all manufactured nanocomposites. The tensile strength was increased by 28% through the hybridisation of AA5083 using a hybrid of VC-GNPs. The dispersion of Ta2C-GNPs and VC-GNPs in the matrix led to excellent interfacial adhesion, resulting in an enhancement in the mechanical properties. The AA5083/VC-GNPs surface composite outperformed other manufactured composites regarding wear resistance. In addition, due to GNPs soft nature, it reduced the coefficient of friction (COF) of the manufactured composites by 20–25% compared to other reinforcements.  相似文献   
23.
In this article, an adaptive denoising method is suggested to accurate investigate the optical and structural features of polymeric fibers from noisy phase shifting microinterferograms. The mixed class of noise that may produce in the phase-shifting interferometric techniques is established. To our knowledge, this is an early study considered the mixing noises that may occur in microinterferograms. The suggested method utilized the convolution neural networks to detect the noise class and then denoising, it according to its class. Four convolution neural networks (Googlenet, VGG-19, Alexnet, and Alexnet–SVM) are refined to perform the automatic classification process for the noise class in the established data set. The network with the highest validation and testing accuracy of these networks is considered to apply the suggested method on realistic noisy microinterferograms for polymeric fibers, polypropylene and antimicrobial polyethylene terephthalate)/titanium dioxide, recoded using interference microscope. Also, the suggested method is applied on noisy microinterferograms include crazing and nanocomposite material. The demodulated phase maps and the three-dimensional birefringence profiles are calculated for tested fibers according to the suggested method. The obtained results are compared with the published data for these fibers and found to be in good agreements.  相似文献   
24.
It is a common observation that whenever patients arrives at the front desk of a hospital, outpatient clinic, or other health-associated centers, they have to first queue up in a line and wait to fill in their registration form to get admitted. The long waiting time without any status updates is the most common complaint, concerning health officials. In this paper, UrNext, a location-aware mobile-based solution using Bluetooth low-energy (BLE) technology is presented to solve the problem. Recently, a technology-oriented method, the Internet of Things (IoT), has been gaining popularity in helping to solve some of the healthcare sector’s problems. The implementation of this solution could be illustrated through a simple example of when a patient arrives at a clinic for a consultation. Instead of having to wait in long lines, that patient will be greeted automatically, receive a push notification of an admittance along with an estimated waiting time for a consultation session. This will not only provide the patients with a sense of freedom but would also reduce the uncertainty levels that are generally observed, thus saving both time and money. This work aims to improve the clinics’ quality of services, organize queues and minimize waiting times, leading to patients’ comfort while reducing the burden on nurses and receptionists. The results demonstrate that the presented system is successful in its performance and helps achieves a pleasant and conducive clinic visitation process with higher productivity.  相似文献   
25.
Ceramic design based on reducing friction and wear-related failures in moving mechanical systems has gained tremendous attention due to increased demands for durability, reliability and energy conservation. However, only few materials can meet these requirements at high temperatures. Here, we designed and prepared a Sn-containing Si3N4-based composite, which displayed excellent tribological properties at high temperatures. The results showed that the friction coefficient and wear rate of the composites were reduced to 0.27 and 4.88 × 10?6 mm3 N?1 m?1 in air at 800 °C. The wear mechanism of the sliding pairs at different temperatures was revealed via detailed analyses of the worn surfaces. In addition, the tribo-driven graphitization was detected on the wear surfaces and in the wear debris, and the carbon phase was identified by SEM, TEM, and Raman spectrum.  相似文献   
26.
《Ceramics International》2022,48(5):6322-6337
To optimize the corrosion, bioactivity, and biocompatibility behaviors of plasma electrolytic oxidation (PEO) coatings on titanium substrates, the effects of five process variables including frequency, current density, duty cycle, treatment time, and electrolyte Ca/P ratio were evaluated. In our systematic study, a Taguchi design of experimental based on an L16 orthogonal array was used. For this, the coatings characteristics such as the surface roughness, wettability, rutile to anatase and Ca/P ratios, and corrosion polarization resistance were investigated. After determining the optimum process variables for each response, the apatite forming ability in SBF (bioactivity behavior) and MG63 cell attachment and flattening (biocompatibility behavior) for two groups of coatings were examined. The first group was optimized based on the maximum corrosion polarization resistance and the variables were set as the frequency of 2000 Hz, the current density of 5 A/dm2, the duty cycle of 30%, the treatment time of 5 min, and the Ca/P ratio of 0.65 at. % in the electrolyte. For the second group, the maximum surface roughness, greatest Ca/P ratio, and highest wettability as well as the minimum rutile to anatase ratio in coatings, could be obtained when the variables were set as the frequency of 10 Hz, the current density of 12.5 A/dm2, the duty cycle of 50%, the treatment time of 12.5 min, and the Ca/P ratio of 1.70 at. % in the electrolyte. The results showed that while both groups of coatings indicated a significant apatite forming ability and can serve as bioactive coatings, a proper attachment and flattening of cells and consequently, the favorable biocompatibility properties were seen only in the first group.  相似文献   
27.
《Ceramics International》2022,48(5):6372-6384
Sm2O3-HfO2 series ceramics were synthesized at high temperature using the solid-state reaction. The phase stability, thermo-physical and infrared emission properties of Sm2Hf2O7 (SHO) and Sm2Hf2O7-44.83 wt%HfO2 (25S/H) composite ceramics were comparatively investigated. Furthermore, their calcium magnesium aluminosilicate (CMAS) corrosion was conducted at 1250°C for different times. The results reveal that both SHO and 25S/H ceramics have excellent phase stability at 1600°C as well as excellent sintering resistance. SHO still exhibits slightly lower thermal conductivity and lower hardness and Young's modulus, higher thermal expansion coefficient (CTE) and fracture toughness as well as higher infrared emittance (0.899 at 800°C) than 25S/H composite with the excessive HfO2 inside. Both SHO and 25S/H ceramics react with CMAS to form a relatively compact reaction layer, which can effectively prevent the penetration of CMAS. These results preliminarily indicate that SHO ceramic can be proposed as an alternative material of the traditional YSZ for high-temperature thermal protective applications thanks to its compatible performance of low thermal conductivity and high infrared radiation, etc.  相似文献   
28.
《Ceramics International》2022,48(9):11988-11997
We have studied peculiarities in the formation of single-crystalline barium titanate (BaTiO3) nanorods from a glycolate-mediated complex via a single-step hydrothermal process under different supersaturation (SR) conditions. X-ray diffraction (XRD) showed the formation of pure BaTiO3 with an SR of above 19. The tetragonality for the BaTiO3 (c/a) reached 1.013 at SR = 19–29 and dropped to 1.010 for SR = 39. According to the transmission electron microscopy (TEM) and XRD analyses, the rod-shaped particles exhibited single crystallinity and crystal growth along the [001] plane. With scanning electron microscopy (SEM), the morphological evolution from a plate-shaped intermediate precursor (SR = 6–9) to a rod-shaped product with an aspect ratio of 6–9 (SR = 19–29), and to non-polar material with an irregular structure (SR = 39), was observed. The negative slope, linear dependence of the particles’ width and length on the supersaturation level in the range SR = 19–39 was established for the first time. The replacement of the prevailing crystallization mechanism from in-situ topotactic transformation into dissolution-precipitation above SR = 19 was observed. It was shown that with a simple regulation of the SR, the structural and morphological characteristics of the obtained BaTiO3 nanoparticle can be effectively tuned.  相似文献   
29.
Brown algae are becoming increasingly popular as a food source and dietary supplement in Europe and other Western countries. As they are highly rich in iodine, they represent a potential new dietary iodine source. Iodine deficiency has been re-emerging in Europe, and it is important to ensure adequate intake through one's diet. However, macroalgae, and especially brown algae, may contain very high amounts of iodine, and both iodine deficiency and excessive iodine may increase the risk of negative health effects. The iodine content of algae or foods containing algae is currently not regulated in the European Union. The aim of this paper is to review the literature to determine the chemical species of iodine in brown algae, the loss of iodine during processing, and the bioavailability and bioaccessibility of iodine. A systematic search of the literature was performed in April 2021, via the databases Web of Science and PubMed. The review includes studies of iodine in brown macroalgae in relation to bioavailability, bioaccessibility, processing and speciation. A meta-analysis was conducted in relation to the following topics: (i) the correlation between total iodine and iodide (I) content in brown algae; (ii) the correlation between the loss of iodine during processing and the I content; and (iii) the correlation between bioavailability and the I content. The bioavailability of iodine from brown algae was generally high, with in vivo bioavailability ranging from 31% to 90%. The in vitro bioavailability of iodine (2%–28%) was systematically lower than in vivo bioavailability (31%–90%), indicating an inadequate in vitro methodology. Processing may reduce the iodine content of brown algae, and a higher I content was positively correlated with increased iodine loss during processing. Although processing strategies may reduce the iodine content of brown algae significantly, the iodine content may still be high after processing. These findings may be used in food safety evaluations of brown algae as well as in the development of macroalgae-containing foods with iodine contents suitable for human consumption. Further research on processing techniques to reduce the iodine content in brown macroalgae are warranted.  相似文献   
30.
To enhance chemical stability and suppress of aggregation of magnetite nanoparticles (MNPs), which are used as a support for thermoresponsive copolymer immobilization, silica coating of the MNPs is applied via the electrooxidation method. Although the resulting silica coated-MNPs also formed aggregates, the size distribution of the aggregate shifted to smaller size range. Because of that, the surface area available for copolymer immobilization increased approximately 6.7 times at maximum as compared with that of the uncoated MNPs. It contributed to the increase of the amount of the immobilized copolymer on the silica-coated MNPs, which is approximately four times larger than that on the uncoated MNPs. Fe3O4 dissolution test confirmed enhancement of chemical stability of MNPs. The thermoresponsive copolymer immobilized on the silica-coated MNPs shows the ability to recycle Cu(II) ion from Cu(II) containing solution by changing temperature with significantly shorter time than those in other thermoresponsive adsorbents in gel form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号